Abstract

It is crucial to understand the development of hydrological drought which is unique to a sub-basin to derive management strategies that can address the cause. In this study, relationships between climate and catchment control against hydrological drought development in the Tekeze River Basin (TRB), Ethiopia, were assessed. The Water Evaluation and Planning (WEAP) modeling tool was selected to mimic the behavior and historical characteristics of the basin which was modeled for the period 1981 to 2018. The most severe drought events and historical drought years were selected and analyzed on a monthly basis, where the classical rainfall deficit drought was identified to be the most common typology within the basin. Once modeled, both meteorological and hydrological drought analyses were performed using the Threshold Level Method (TLM) where 168 months of meteorological drought with magnitudes as high as 110 mm/month and 60 months of streamflow anomalies with magnitudes of up to 17 mm/month were observed. While the temporal resolution impacts results pertaining to hydrological drought development, the analysis showed that the basin is fast responding, where storage characteristics did not play a significant role in delaying a hydrological drought onset. Compared to naturalized streamflow, the construction of the Tekeze Dam on the main river was indicative of an over 900% increase in dry season flows but a reduction of 23% of wet season flows, showing the potential to redistribute runoff in space and time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call