Abstract
In tidal flats that lack plants, methane (CH4) fluxes are both positive (gas emission) and negative (gas “sinking”) in nature. The levels of methanotroph populations significantly affect the extent of CH4 sinking. This preliminary study examined CH4 flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the CH4 and CO2 concentrations were continuously monitored using a closed, diffuse CH4/CO2 flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level CH4 production, likely due to diffusive emission of CH4 in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has CH4 oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed CH4-oxidation process was supported by the decrease in the δ13C of headspace CO2 during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric CH4 over tidal flats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have