Abstract

Using treated wastewater for irrigation is a good solution for conserving water, but it is also in part responsible for groundwater and water surface pollution by heavy metals, especially copper and cadmium. The soil can be a barrier to retaining these pollutants and protecting the water resource. This study presents an assessment of the adsorption of copper and cadmium by two agricultural soils from Tunisia and Romania to evaluate the risk of water pollution. At first, the two soils were characterized with a scanning electron microscope and different physico-chemical analyses. Before adsorption, the elemental analysis performed with an SEM showed a very low amount of cadmium and copper in both soils (0.01%). The Tunisian soil was considered clayey soil, and the Romanian soil was sandy clayey soil. All experimental kinetics and isotherms were well correlated (R2 > 0.9) with the pseudo-first-order kinetic model and the modified and extended Redlich–Peterson binary adsorption model. For an initial concentration of both pollutants of 0.1 mmol·L−1, the amounts retained and the adsorption percentage of copper and cadmium by the two soils indicate that the Romanian soil (qCu = 0.87 μmol·g−1; % Cu = 98%; qCd = 0.88 μmol·L−1; % Cd = 99%) retained both pollutants better than the Tunisian soil (qCu = 0.65 μmol·g−1, %Cu = 83%; qCd = 0.73 μmol·g−1; %Cd = 93%). Copper presents the greatest risk of water resource pollution, especially in Tunisia. The SEM confirmed the soil adsorption of Cu and Cd and estimated that the retention mechanisms of these two heavy metals are mainly related to the amount of phosphorus, chloride, sulfur and carbon by complexation and precipitation reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call