Abstract

Scats are often used to study ecological parameters of carnivore species. However, field identification of carnivore scats, based on their morphological characteristics, becomes difficult if many carnivore species are distributed in the same area. We assessed error rates in morphological identification of five sympatric carnivores’ scats in north-eastern Himalayan region of Pakistan during 2013–2017. A sample of 149 scats were subjected to molecular identification using fecal DNA. We used a confusion matrix to assess different types of errors associated with carnivore scat identification. We were able to amplify DNA from 96.6% (n = 144) of scats. Based on field identification of carnivore scats, we had predicted that out of 144 scats: 11 (7.6%) scats were from common leopard, 38 (26.4%) from red fox, 29 (20.1%) from Asiatic jackal, 37 (25.7%) from yellow throated martin, 14 (9.7%) from Asian palm civet and 15 (10.4%) from small Indian civet. However, molecular identification revealed and confirmed nine were scats (6.24%) from common leopard, 40 (27.8 %) from red fox, 21 (14.6%) from Asiatic jackal, 45 (31.25%) from Asian palm civet, 12 (8.3%) scats from small Indian civet, while 11 scats (7.6%) were found from Canis lupus Spp., three (2%) from dog, one (0.7 %) scat sample from porcupine, and two (1.4%) from rhesus monkey. Misidentification rate was highest for Asian palm civet (25.7%), followed by red fox (11.1%) and Asiatic jackal (9.7%) but least for common leopard scats (4.2%). The results specific to our study area concur with previous studies that have recommended that carnivore monitoring programs utilize molecular identification of predator scats. Using only morphological identification of scats can be misleading and may result in wrong management decisions.

Highlights

  • Sound and effective wildlife management requires accurate scientific information about the ecology of a species

  • Mean diameter of common leopard scat was wider 1.03 ± 0.04 cm followed by Asiatic jackal 0.86 ± 0.01 cm, Asian palm civet 0.62 ± 0.03 cm, red fox 0.51 ± 0.01 cm and small Indian civet 0.45 ± 0.02 cm

  • Mean disjoint segments of leopard scat were greater in number 4.33 ± 0.52 whereas, of small Indian civet were least in number 1.16 ± 0.11 (Table 1; Fig. 1)

Read more

Summary

Introduction

Sound and effective wildlife management requires accurate scientific information about the ecology of a species. Carnivore feces have been used to study ecology of predators for decades (Adrados et al, 2018; Elton, 1927; Laguardia et al, 2015; Litvaitis, 2000; Martınez-Gutierrez, Palomares & Fernandez, 2015; Michalski et al, 2011; Murie, 1944; How to cite this article Akrim et al (2018), Assessment of bias in morphological identification of carnivore scats confirmed with molecular scatology in north-eastern Himalayan region of Pakistan. Visual identification of similar-sized carnivore scats based on morphology can be challenging (Davison et al, 2002) and often misleading (Bulinski & McArthur, 2000; Martınez-Gutierrez, Palomares & Fernandez, 2015; Morin et al, 2016; Weiskopf, Kachel & McCarthy, 2016)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call