Abstract

This paper focuses on evaluating the increase in axial pile resistance subjected to both consolidation and aging setups. Consolidation and aging setup models were first developed to estimate the setup parameters based on databases collected from literature, which include 10 instrumented piles for consolidation setup and 26 test piles for long-term aging. The eight top-performing pile cone penetration test (CPT) methods that were evaluated in a previous study were used to estimate the side resistance of soil layers at 14 days after pile driving. The developed consolidation and aging setup models were then used to extrapolate the results to evaluate the side resistance of each soil layer at the end of consolidation and for long-term aging. The estimated side and total resistances were compared with the measurements from pile load tests considering both consolidation and aging setups. The resistances estimated before and after completion of excess pore water pressure dissipation indicates that significant aging takes place after consolidation setup. The value of consolidation setup parameter ( Ac) was 0.53, and, for aging, the setup parameter ( Ag) was 0.23 in clay and 0.16 in sand. The results show that all pile CPT methods with/without using a consolidation setup model tend to underestimate the unit side resistance of clay soil layers. The use of pile CPT methods in combination with an aging model improved the accuracy of pile CPT methods, and this was verified using load test results for five piles subjected to aging. The Philipponnat and University of Florida (UF) methods showed the best performance on estimating the total resistance of piles subjected to aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.