Abstract

The objective of this study was to evaluate the antimicrobial potential of nanocomposites containing vitamin K2, hydroxyapatite nanoparticles (nHAP), and chitosan (Chito)-coated dental implants against clinically relevant microbial strains. Four test compounds were prepared: vitamin K2 + nHAP, K2 + Chito + nHAP, vitamin K2, and vitamin K2 + Chito. Agar well diffusiontestwas conducted to assess the antimicrobial activity of these compounds against Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Enterococcus faecalis (E. faecalis), and Candida albicans (C. albicans). Results: The vitamin K2 + nHAP nanocomposite exhibited antimicrobial activity against all tested microorganisms, with E. faecalis showing the highest sensitivity (25 mm zone of inhibition at 100 µL concentration). The K2 + Chito + nHAP nanocomposite demonstrated potent antimicrobial activity with C. albicans displaying the highest sensitivity (28 mm zone of inhibition at 100 µL concentration). Pure vitamin K2 showed limited antimicrobial activity, vitamin K2 combined with chitosan exhibited significant susceptibility to C. albicans, resulting in a substantial inhibition zone of 24 mm diameter at a concentration of 100 µL. The synergistic effects of vitamin K2 with nHAP and chitosan highlight the potential of these nanocomposites for biomedical applications. These findings contribute to the development of effective nanocomposites to address antimicrobial resistance and improve infection control in various biomedical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.