Abstract
In the present paper an evaporation model is implemented and assessed in a Computational Fluid Dynamics (CFD) code named ISIS. First, the influence of the cell size and time step on the temperature field is studied via simulations with a prescribed fuel Mass Loss Rate (MLR). Then, the evaporation model is assessed using predictive simulations. The experimental scenario is a 30 cm-diameter heptane pool fire. The average fuel Mass Loss Rate Per Unit Area (MLRPUA) is predicted within 5.5% deviation from the experimental value. In addition, an analysis of the temperature and heat fluxes at the surface of the liquid, the mass transfer coefficient and the temperature inside the liquid is performed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have