Abstract

The objectives of this study were to identify the factors that are statistically associated with the probability of aircraft damage in the event of a bird strike and to develop classification models to predict aircraft damage in an event of a bird strike. The FAA National Wildlife Strike Database was used for the study to develop random forest, artificial neural network, logistic regression, support vector machine, extra gradient boost (XGBoost), and K-nearest neighbours classifier models. The random forest classifier, logistic regression, and XGBoost classifier exhibited the most robust predictive powers with accuracies of 78.81%, 78.51% and 78.35%, respectively. Based on the variable assessment scores for the random forest classifier, the size of the bird, height of impact, aircraft speed, and aircraft mass had the highest contributions towards predicting aircraft damage for the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.