Abstract
Abstract. In semiarid areas, agricultural production is restricted by water availability; hence, efficient agricultural water management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one of the most relevant water balance fluxes, may help the sustainable management of water resources. Remote sensing provides periodic data about actual vegetation temporal dynamics (through the normalized difference vegetation index, NDVI) and water availability under water stress (through the surface temperature Tsurf), which are crucial factors controlling ET. In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE) in the Kairouan plain (central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model fed by low-resolution remote sensing data (Terra and Aqua MODIS). The work's goal was to assess the operational use of the SPARSE model and the accuracy of the modeled (i) sensible heat flux (H) and (ii) daily ET over a heterogeneous semiarid landscape with complex land cover (i.e., trees, winter cereals, summer vegetables). SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass times. The good correspondence (R2 = 0.60 and 0.63 and RMSE = 57.89 and 53.85 W m−2 for Terra and Aqua, respectively) between instantaneous H estimates and large aperture scintillometer (XLAS) H measurements along a path length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scales (RMSE = 47.20 and 43.20 W m−2 for Terra and Aqua, respectively, and R2 = 0.55 for both satellites). Additionally, water stress was investigated by comparing modeled (SPARSE) and observed (XLAS) water stress values; we found that most points were located within a 0.2 confidence interval, thus the general tendencies are well reproduced. Even though extrapolation of instantaneous latent heat flux values to daily totals was less obvious, daily ET estimates are deemed acceptable.
Highlights
In water-scarce regions, especially arid and semiarid areas, the sustainable use of water by resource conservation as well as the use of appropriate technologies to do so is a priority for agriculture (Amri et al, 2014; Pereira et al, 2002).Water use rationalization is especially needed for countries suffering from water scarcity, or for countries that probably would suffer from water restrictions according to climate change scenarios
This study evaluated the performances of the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model forced by MODIS remote sensing products in an operational context to estimate instantaneous and daily evapotranspiration
The estimates of the sensible heat flux derived from the SPARSE model are in close agreement with those obtained from the XLAS
Summary
Water use rationalization is especially needed for countries suffering from water scarcity, or for countries that probably would suffer from water restrictions according to climate change scenarios. The major part of the southern Mediterranean countries, among others Tunisia, already suffer from water scarcity and show a growing water deficit, due to the combined effect of the growth in water needs (soaring demography and irrigated areas extension) and the reduction of resources (temporary drought and/or climate change). This implies that closely monitoring the water budget components is a major issue (Oki and Kanae, 2006)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have