Abstract

The objective of this study was the development of a novel, biochar-based Pd nanocatalyst and its evaluation for the promotion of the Suzuki-Miyaura coupling reaction. The Fe3O4–Pd-biochar composite was successfully characterized through a range of spectroscopic and elemental analysis techniques. Its catalytic activity was initially assessed using p-NO2C6H4I as a model reactant and later for the production of biaryls from a wide range of aryl halides, under microwave irradiation and solvent-free conditions. The optimum yield of 99% was obtained at a catalyst dosage of 8 mg, microwave irradiation of 400 W, 6 min residence time, using K2CO3 as the base. Furthermore, the catalyst promoted the Suzuki-Miyaura reaction of aryl iodides and bromides (yields in the range of 88–97 and 86–97%, respectively), but was less successful for aryl chlorides (yields 78–83%). The presence of Fe3O4 allowed for the quick recovery of the catalyst, whereas repeated runs established its recyclability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.