Abstract

The Cross-track Infrared Sounder (CrIS) is an infrared Fourier-transform spectrometer that measures the Earth’s infrared radiance at high spectral resolution and high accuracy. The potential for polarization errors contributing significantly to the radiometric uncertainty of infrared remote sounders has been well recognized and documented, particularly due to polarization-dependent scene select mirrors operated in conjunction with grating-based instruments. The issue is equally applicable to FTS-based sensors. While the CrIS sensor utilizes an unprotected gold scene select mirror which has extremely low polarization in the infrared and the angle of incidence at the mirror is maintained for all calibration and Earth scene views, the radiometric bias due to polarization effects was determined to be non-negligible for cold scenes. A model for the polarization-induced calibration bias and the associated correction is presented for the CrIS instrument, along with details of the model parameter determination, and the impact of the correction on the calibrated radiances for a range of scene temperatures and types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call