Abstract

Smart Grid is an intelligent power grid with a bidirectional flow of electricity and information, that applies intelligent techniques to operate the grid autonomously near the stability limit. An intelligent technique is developed to identify and predict the abnormalities due to changes in customer behaviour and the unexpected disruption in the grid. A cost-sensitive stacked ensemble classifier (CS-SEC) is proposed for predicting the operations in smart grid that combines four cost-sensitive base classifiers, namely Extreme gradient boosting, Naive Bayes, Nu-support vector machine and Random forest at level-1 and the support vector machine as the meta classifier in level-2. The meta classifier uses the probability of prediction of the first-level classifiers with stratified 5-fold cross-validation to predict the decentralized smart grid stability. The proposed stacked ensemble classifier achieved an accuracy of 98.6% with specificity, recall and precision of 98.34%, 99.0% and 99.06%, respectively. Extensive experimental evaluation and results show that the proposed CS-SEC provides an accurate prediction of grid stability compared with other state-of-the-art models. The results reveal the robustness and competency of the proposed CS-SECs with optimized parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call