Abstract

At present, the controllable parameters of micro turbojet engines in engineering applications are mainly speed-fuel flow (hereinafter referred to as flow) control, in which closed-loop proportional–integral–derivative (PID) control is mostly used to achieve a stable control of engine speed under slow engine conditions. For the optimal adjustment of PID parameters, this paper designs an improved evolutionary strategy for the self-tuning of control parameters in the engine speed and flow control system and formulates an improved PI controller based on a neural network. The simulation experimental results show that the method can realistically achieve stable and fast control of the engine under above slow conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call