Abstract

AbstractWind is an important atmospheric variable that is receiving increased attention as the world seeks to shift from carbon-based fuels in order to mitigate climate change. This has resulted in increased need for more temporally and spatially continuous wind information, which is often met through the use of reanalysis data. However, limited work has been done to assess the long-term accuracy of the wind data against observations in the context of specific applications. This study focuses on the representation of daily and monthly average 10-m wind speed data in the upper Midwest by six global reanalysis datasets. The accuracy of the datasets was assessed using several measures of skill, as well as the associated wind speed distributions and long-term trends. While it was found that higher resolution and complexity in more recent generations of reanalyses produced more accurate simulations of wind in the region, important biases remained. High variability in the observed data resulted in lower correlations at the monthly time scale. As with previous research, linear trends calculated from the reanalyzed wind speeds were significantly underestimated compared to observed trends. While it is expected that future improvements in model resolution, physics, and data assimilation will further improve wind representation in reanalyses, accounting for the differences between the available datasets and their associated biases will be important for potential applications of the output, particularly wind resource assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call