Abstract

Gas stations distributed around densely populated areas are responsible for toxic pollutant emissions such as volatile organic compounds (VOCs). This study aims to measure VOCs emission from three different kinds of gas stations to determine the extent of pollution from the gas stations and the most frequent type of VOC compound emitted. The concentrations of ambient VOCs at three refueling stations with a different type of fuels in Mashhad were monitored. The result of this study showed that CNG fuel stations are less polluting than petrol stations. In all the studied sites, the highest concentrations were related to xylene isomers, irrespective of the fuel type. Total VOCs at the supply of both compressed natural gas (CNG) and gasoline stations was 482.36 ± 563.45 µg m−3. At a CNG station and a gasoline station, total VOC concentrations were 1363.4 ± 1975 µg m−3 and 410.29 ± 483.37 µg m−3, respectively. The differences in concentrations of toluene and m,p-xylene between the fuel stations can be related to the quality and type of fuel, vapor recovery technology, fuel reserves, dripless nozzles, traffic density in these stations, meteorological conditions and the location of sampling sites. The combination of a sine function and a quadratic function could model the fluctuation behavior of air pollutants like m,p-xylene. In all the sites, the highest concentrations were related to xylene isomers, irrespective of the type of fuel. The changing rate of m,p-xylene pollutant in each station was also modeled in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.