Abstract
This paper addresses treatment effect heterogeneity (also referred to, more compactly, as 'treatment heterogeneity') in the context of a controlled clinical trial with binary endpoints. Treatment heterogeneity, variation in the true (causal) individual treatment effects, is explored using the concept of the potential outcome. This framework supposes the existance of latent responses for each subject corresponding to each possible treatment. In the context of a binary endpoint, treatment heterogeniety may be represented by the parameter, pi2, the probability that an individual would have a failure on the experimental treatment, if received, and would have a success on control, if received. Previous research derived bounds for pi2 based on matched pairs data. The present research extends this method to the blocked data context. Estimates (and their variances) and confidence intervals for the bounds are derived. We apply the new method to data from a renal disease clinical trial. In this example, bounds based on the blocked data are narrower than the corresponding bounds based only on the marginal success proportions. Some remaining challenges (including the possibility of further reducing bound widths) are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.