Abstract

Randomized trials typically estimate average relative treatment effects, but decisions on the benefit of a treatment are possibly better informed by more individualized predictions of the absolute treatment effect. In case of a binary outcome, these predictions of absolute individualized treatment effect require knowledge of the individual's risk without treatment and incorporation of a possibly differential treatment effect (ie, varying with patient characteristics). In this article, we lay out the causal structure of individualized treatment effect in terms of potential outcomes and describe the required assumptions that underlie a causal interpretation of its prediction. Subsequently, we describe regression models and model estimation techniques that can be used to move from average to more individualized treatment effect predictions. We focus mainly on logistic regression‐based methods that are both well‐known and naturally provide the required probabilistic estimates. We incorporate key components from both causal inference and prediction research to arrive at individualized treatment effect predictions. While the separate components are well known, their successful amalgamation is very much an ongoing field of research. We cut the problem down to its essentials in the setting of a randomized trial, discuss the importance of a clear definition of the estimand of interest, provide insight into the required assumptions, and give guidance with respect to modeling and estimation options. Simulated data illustrate the potential of different modeling options across scenarios that vary both average treatment effect and treatment effect heterogeneity. Two applied examples illustrate individualized treatment effect prediction in randomized trial data.

Highlights

  • Prediction of risk and prediction of treatment effect are two key components in modern medicine and personalized healthcare

  • We focus on the risk of developing a binary outcome or endpoint, and aim to combine the highly conditional nature of typical risk prediction modeling with causal inference about treatment effectiveness

  • We have provided an overview of the process of individualized treatment effect prediction in the context of a randomized trial with a binary endpoint

Read more

Summary

Introduction

Prediction of risk and prediction of treatment effect are two key components in modern medicine and personalized healthcare. Risk predictions are classically functions of multiple patient characteristics. They include predictions of the risk of having a specific health outcome or condition (diagnosis) or of developing a future health outcome (prognosis). Predictions of treatment effect do express an expected difference due to modification of the treatment condition. They have classically been studied on a group level (eg, treated group vs control group), often assume a constant effect across individuals, have a causal interpretation, and are traditionally expressed using relative effect measures (eg, odds ratio, relative risk, or hazard ratio).[2]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call