Abstract

The evaluation of the use of sawdust in drilling fluid formulation is covered in this study. The investigation focused on the physicochemical and rheological properties of water-based mud (WBM) drilling fluids that included four different dosages of sawdust. These properties included yield stress, plastic viscosity, rheological behavior, gel strength, filtration test (API filtrate; American Petroleum Institute), and pH. The sawdust was employed as a substitute for the polymers commonly used in water-based muds (WBMs) to serve either as a viscosifier or as a fluid loss controller. The current study set out to evaluate how sawdust (diameter ≤630 µm) affected the primary characteristics of the drilling muds. Sawdust was utilized in place of carboxymethyl cellulose polymer (CMC) as a viscosifier and polyanionic cellulose polymer (PAC) as a filtrate reducer at several dosages (0, 10, 20, 50, and 100 g/L). It was found that the sawdust dosage and its role had a significant impact on the rheological characteristics of the drilling fluids. At amounts between 20 and 50 g/L, the sawdust was added as a viscosifier to the drilling fluids under study, resulting in a significant improvement in their physicochemical and rheological parameters (yield stress, plastic viscosity, and gel strength). However, the drilling fluids showed extremely high rheological properties and a viscosity that can slow down fluid circulation in the well when 100 g/L of sawdust were used, totally substituting for the polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call