Abstract
The Laban Movement Analysis system (LMA) is a widely used system for the description of human movement. Here we present results of an empirical analysis of the reliability of the LMA system. Firstly, we developed a directed graph-based representation for the formalization of LMA. Secondly, we implemented a custom video annotation tool for stimulus presentation and annotation of the formalized LMA. Using these two elements, we conducted an experimental assessment of LMA reliability. In the experimental assessment of the reliability, experts–Certified Movement Analysts (CMA)–were tasked with identifying the differences between a “neutral” movement and the same movement executed with a specific variation in one of the dimensions of the LMA parameter space. The videos represented variations on the pantomimed movement of knocking at a door or giving directions. To be as close as possible to the annotation practice of CMAs, participants were given full control over the number of times and order in which they viewed the videos. The LMA annotation was captured by means of the video annotation tool that guided the participants through the LMA graph by asking them multiple-choice questions at each node. Participants were asked to first annotate the most salient difference (round 1), and then the second most salient one (round 2) between a neutral and gesture and the variation. To quantify the overall reliability of LMA, we computed Krippendorff’s α. The quantitative data shows that the reliability, depending on how the two rounds are integrated, ranges between a weak and an acceptable reliability of LMA. The analysis of viewing behavior showed that, despite relatively large differences at the inter-individual level, there is no simple relationship between viewing behavior and individual performance (quantified as the level of agreement of the individual with the dominant rating). This research advances the state of the art in formalizing and implementing a reliability measure for the Laban Movement Analysis system. The experimental study we conducted allows identifying some of the strengths and weaknesses of the widely used movement coding system. Additionally, we have gained useful insights into the assessment procedure itself.
Highlights
Through movement, humans act upon and perceive the world
At the end of the most granular system, we find the Body Action and Posture Coding System (BAP) that consists of 141 behavior variables that can be combined and that encodes time-locked temporal behavioral segments
We asked Certified Movement Analysts (CMA) to identify the change between a “neutral” gesture of knocking or showing direction and the same gesture executed with a specific variation from the Laban Movement Analysis system (LMA) parameter space
Summary
Humans act upon and perceive the world. Movement is studied and applied in many scientific, technological, and artistic areas. For example, highlights the role of movement in cognition [1], while Human-Computer-Interaction starts to embrace the concept of embodiment [2] and the importance of movement in interaction [3,4]. Beyond its direct effect on the physical world, movement conveys intention and emotion [5]. This expressive and communicative aspect is studied in artistic domains such as dance and music, in the field of non-verbal communication, and as a means of symbolic communication e.g. through sign language. An important component of the study of movement is the development of movement classification [6], coding [7], and interpretation systems [8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have