Abstract
To accurately measure the number of species in a biological community, a complete inventory should be performed, which is generally unfeasible; hopefully, estimators of species richness can help. Our main objectives were (i) to assess the performance of nonparametric estimators of plant species richness with real data from a small set of meadows located in the Basque campina (northern Spain), and (ii) to apply the best estimator to a larger dataset to test the effects on plant species richness caused by environmental conditions and human practices. Two non-asymptotic and seven asymptotic accumulation functions were fitted to a randomized sample-based rarefaction curve computed with data from three well sampled meadows, and information theoretic methods were used to select the best fitting model; this was the Morgan-Mercer-Flodin, and its asymptote was taken as our best guess of true richness. Then, five nonparametric estimators were computed: ICE, Chao 2, Jackknife 1 and 2, and Bootstrap; MMRuns and MMMeans were also assessed. According to the criteria set for our performance assessment (i.e., bias, precision, and accuracy), the best estimator was Jackknife 1. Finally, Jackknife 1 was applied to assess the effects of terrain slope and soil parent material, and also fertilization, grazing, and mowing, on plant species richness from a larger dataset (20 meadows). Results suggested that grass cutting was causing a loss of richness close to 30%, as compared to unmowed meadows. It is concluded that the use of nonparametric estimators of species richness can improve the evaluation of biodiversity responses to human management practices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have