Abstract
Real-time GNSS PPP is commonly used for high-precision positioning, but its utility is constrained by factors that necessitate extended convergence periods for a dependable accuracy. Multipath, as an unmodeled error, significantly curtails PPP performance in time-constrained scenarios. Approximately 31 consecutive days of multi-GNSS data from the satellite positioning service of the German national survey (SAPOS) network were collected to evaluate the effectiveness of multipath correction for real-time PPP ambiguity resolution (AR). Using principal component analysis (PCA) to extract the common-mode error (CME) from observation residuals prior to multipath modeling, a multipath hemispherical map (MHM) and sidereal filtering (SF) approach were employed to alleviate the effects of multipath and assess the efficacy of multipath correction in real-time PPP-AR. The average RMS reductions of the carrier-phase and pseudorange residual of multi-GNSS were 25.5% and 20.1% with MHM 0.5, while being 24.4% and 18.3% using SF. With MHM 0.5 correction, the TTFF reductions were approximately 7.0%, 17.7%, 37.5%, and 23.7% for G/GE/GC/GEC kinematic PPP-AR, respectively; and the convergence times for G/GE/GC PPP-AR were reduced to 18.2, 11.7, and 8.6 min, while GEC achieved an average convergence time of 7.1 min; a remarkable improvement compared to the multipath-uncorrected result (18 min). Moreover, 80% of the stations achieved convergence within 10 min, while 40% achieved convergence within 5 min. The kinematic positioning accuracy for the GEC solution improved from 0.97, 0.88, and 2.07 cm, to 0.94, 0.70, and 1.72 cm. In the static results, the TTFF shortened by 30.1%, 19.1%, and 20.1% for G/GE/GC, and the GEC decreased from 10.5 to 9.7 min; the average convergence time for G/GE/GC shortened to 13.0, 10.0, and 11.3 min, and for GEC shortened from 12.5 to 8.3 min. For the GPS-only solution, 78.3% of stations achieved convergence within 15 min. Similarly, for the GE scheme, the convergence time was primarily concentrated within 10 min, and for GC and GEC, with the application of enhanced multipath error correction, some of the stations even achieved convergence of PPP-AR within 5 min. The static positioning accuracy for GEC PPP was 0.50, 0.30, and 0.71 cm for the east, north, and up components.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.