Abstract

Data transmission in Underwater Wireless Sensor Networks (UWSNs) is one of the key enablers used in technologies for future ocean-monitoring systems and other underwater applications. The use of acoustic waves in UWSNs suffer from a high propagation delay, as well as a limited available bandwidth due to the high-noise level, making the use of the different traditional existing protocols a major challenge in this environment. In this paper, we have chosen two TCP mechanisms already defined: TCP Vegas and TCP New Reno, to evaluate the effects of variable TCP packet size and TCP connection density in a subsea network under two common routing protocols, namely AODV and DSDV. The simulation results show that the performances of the two TCPs using DSDV routing protocol provide a more efficient result than those using the AODV routing protocol and that New Reno TCP gives better results than Vegas TCP in the UWSNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call