Abstract

AbstractGiven the short concentration time in urban watersheds, the design of municipal water infrastructures often requires knowledge of sub-daily precipitation intensity. Sub-daily time series can be directly used in a rainfall–runoff model or to derive intensity–duration–frequency (IDF) curves and calculate the design precipitation. Given that precipitation projections are typically at a daily time scale, temporal disaggregation using techniques of variable complexity is often needed to evaluate the risk/performance of urban infrastructure in the future. This paper proposes a simple steady-state stochastic disaggregation model that generates wet/dry day occurrence using a binomial distribution and precipitation intensity using an exponential distribution. Daily precipitation data from four regional climate models (RCMs) forced with the high-emission scenario representative concentration pathway (RCP 8.5) were downscaled using the quantile mapping (QM) method. The performance of the developed method is compared to widely used temporal disaggregation methods, namely, the multiplicative random cascade model (MRC), the Hurst–Kolmogorov process (HKP), and three versions of the K-nearest neighbour (KNN) model, using the Kolmogorov–Smirnov (KS) test. The six disaggregation techniques were assessed at four stations in the South Nation River Watershed in Eastern Ontario, Canada. Results indicate that, despite its simplicity, the proposed method performed well compared to other temporal disaggregation methods when resampling the observed extreme precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call