Abstract

Removal of O2 molecules from the cathode environment in the Li-based battery has led to introduction of the Li–CO2 battery as the novel and promising source of energy storage. In spite of CO2 capture through the reversible reaction between Li atoms and CO2 molecules at the cathode, the performance of the Li–CO2 battery is hampered by formation of the Li2CO3 insulating product in the discharge process and its difficult decomposition in the charging process. Hereby, we explore the possible improvement of the performance of the Li–CO2 battery through replacement of Li2CO3 by Li2C2O4 as the discharge product. This is achieved by systematic addition of Li and CO2 to a cobalt phthalocyanine (CoPc) nanoflake employed as the molecular catalyst in the cathode of the Li–CO2 battery by means of computational density functional theory-based methods. The present results predict high adsorption energy of the CO2 molecules (−2.16 eV), low Li-intercalation voltage (1.45 V), reveal the important and constructive influence...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.