Abstract

As part of a larger study on the bioremediation of oil spills in tropical mangrove habitats, we conducted a series of flask experiments to test for the presence of hydrocarbon degrading microdashorganisms in representative wetland habitats. Also tested was the biodegradation of selected oils (Gippsland Crude, Arabian Light Crude and Bunker C), that are transported along the Australian coast. We also tested for potential inhibition of biodegradation by natural organics in the mangrove pore waters and evaluated the ability of an oxygen release compound (ORC) to stimulate biodegradative processes. Evaporation was a significant factor in removing the light alkane and aromatic hydrocarbons from air and nitrogen sparged flasks. Evaporation removed sim27% of the Gippsland, sim37%of the Arabian, and sim10% of the Bunker oils. Oxygen was necessary to support biodegradation as expected. The microdashorganisms were capable of biodegrading the nondashvolatile saturate fraction of each oil. Degradation removed another 14 of the Gippsland, 30 of the Arabian, and 22 of the Bunker C oils. Normalisation of the individual aromatic hydrocarbon classes to internal triterpane biomarkers indicated some degradation of aromatics in the Arabian Light and Bunker C oils. Although alkane degradation rates were comparable in the three oils, the Gippsland oil had a higher wax content and after 14 days incubation, still contained as much as 25 of the alkanes present in the original oil. Thus, degradation of its aromatic fraction may have been delayed. Based on these results we estimate that Arabian Light Crude oil would have a shorter residence time than the other oils in mangrove sediment. It has a higher content of light hydrocarbons, which are readily removed by both physical and microbial processes. The Bunker C would be expected to have the longest residence time in mangrove sediment, because it contains a larger percentage of higher molecular weight, unresolved components. Comparison of the efficiency of inoculates from three tropical intertidal habitats (Avicennia and Rhizophora mangroves, plus salt marsh sediments) indicated the presence of hydrocarbon degrading microdashorganisms in all three habitats. There was no known history of oil contamination in the soil source area. There was no inhibition of degradation due to addition of mangrove pore waters. The ORC did not facilitate degradation in closed laboratory experiments. These results were used to formulate a bioremediation strategy to treat oiled sediments in mangrove forests in Queensland Australia, which was based on forced aeration and nutrient addition. Evaporation was a significant factor in removing the light alkane and aromatic hydrocarbons from air and nitrogen sparged flasks. Evaporation removed sim27% of the Gippsland, sim37% of the Arabian, and sim10% of the Bunker oils. Oxygen was necessary to support biodegradation as expected. The micro-organisms were capable of biodegrading the non-volatile saturate fraction of each oil. Degradation removed another 14% of the Gippsland, 30% of the Arabian, and 22% of the Bunker C oils. Normalisation of the individual aromatic hydrocarbon classes to internal triterpane biomarkers indicated some degradation of aromatics in the Arabian Light and Bunker C oils. Although alkane degradation rates were comparable in the three oils, the Gippsland oil had a higher wax content and after 14 days incubation, still contained as much as 25% of the alkanes present in the original oil. Thus, degradation of its aromatic fraction may have been delayed. Based on these results we estimate that Arabian Light Crude oil would have a shorter residence time than the other oils in mangrove sediment. It has a higher content of light hydrocarbons, which are readily removed by both physical and microbial processes. The Bunker C would be expected to have the longest residence time in mangrove sediment, because it contains a larger percentage of higher molecular weight, unresolved components. Comparison of the efficiency of inoculates from three tropical intertidal habitats (Avicennia and Rhizophora mangroves, plus salt marsh sediments) indicated the presence of hydrocarbon degrading micro-organisms in all three habitats. There was no known history of oil contamination in the soil source area. There was no inhibition of degradation due to addition of mangrove pore waters. The ORC did not facilitate degradation in closed laboratory experiments. These results were used to formulate a bioremediation strategy to treat oiled sediments in mangrove forests in Queensland Australia, which was based on forced aeration and nutrient addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call