Abstract
AbstractThe Pyrenees constitutes an exceptional example of an Alpine orogenic belt characterized by basement thrust sheets involving Paleozoic rocks and Mesozoic and Cenozoic cover units detached on the Triassic evaporites, the main décollement level. This work is located in the Central Pyrenees, where gravity data help to better constrain the internal architecture of the upper crust of the southern half of the Axial Zone and the northern part of the South Pyrenean Zone, a key area to understand the orogenic evolution of the chain. Previous and new gravity, petrophysical and geological data have been used to obtain the Bouguer and residual anomaly maps of the study area and six serial gravity‐constrained cross sections perpendicular to the main structural trend. The residual anomaly map shows a good correlation between basement units involved in thrust sheets of the study area and gravity highs whereas negative anomalies are interpreted to correspond with Mesozoic/Cenozoic basins, Triassic evaporites, Late Variscan igneous bodies, and Ordovician gneisses. The six gravity‐constrained cross sections highlight strong along‐strike variations on the gravity signal due to lateral differences of the superficial and subsurface occurrence of Triassic evaporites, different geometry at depth of the Late Variscan igneous bodies outcropping in the study area, and geometric lateral variations of the basement thrust sheets and their relationship with the Mesozoic‐Cenozoic units.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have