Abstract
The drug resistance of Plasmodium vivax in clinical cases remains largely unknown till date because of the difficulty in diagnosing the resistant P. vivax strains. The present study was undertaken to determine the prevalence of mutant alleles in drug resistance genes viz P. vivax multi-drug resistance (pvmdr-1), chloroquine resistance transporter (pvcrt-o), dihydrofolate reductase (pvdhfr) and dihydropteroate synthase (pvdhps) along with in vitro chloroquine (CQ) sensitivity in P. vivax clinical isolates. During August–October 2017 a total of 86 samples of the febrile patients were screened and 31 samples were found to be positive for P. vivax in Safdarjung hospital, New Delhi. Sequence genotyping of the drug resistance genes was carried out in these P. vivax samples and in vitro CQ susceptibility for 23 isolates was determined by the schizont maturation assay (SMA). The CQ inhibitory concentrations (IC50) for the clinical isolates was found to be in the range of 25.6–176.7 nM. All the 31 clinical isolates analyzed for pvmdr-1 gene, showed mutant alleles and in only two isolates novel mutations at 861 and 898 codons were observed. Sequence analysis of pvcrt-o, pvdhfr and pvdhps genes revealed wild type genotypes in all the 31 studied isolates. The presence of mutations in pvmdr-1 gene and the increase in the CQ IC50 value indicates the possibility of shift in drug tolerance where CQ with primaquine (PQ) is still the first line of treatment for P. vivax malaria in the country. The regular molecular surveillance in P. vivax would provide useful information for the policy makers of the malaria control programme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have