Abstract

The 2004 Indian Ocean earthquake and tsunami significantly impacted the coastal shoreline of the Andaman and Nicobar Islands, causing widespread destruction of infrastructure and ecological damage. This study aims to analyze the short- and long-term shoreline changes in South Andaman, focusing on 2004–2005 (pre- and post-tsunami) and 1990–2023 (to assess periodic changes). Using remote sensing techniques and geospatial tools such as the Digital Shoreline Analysis System (DSAS), shoreline change rates were calculated in four zones, revealing the extent of the tsunami’s impact. During the pre- and post-tsunami periods, the maximum coastal erosion rate was −410.55 m/year, while the maximum accretion was 359.07 m/year in zone A, the island’s east side. For the 1990–2023 period, the most significant coastal shoreline erosion rate was also recorded in zone A, which was recorded at −2.3 m/year. After analyzing the result, it can be seen that the tsunami severely affected the island’s east side. To validate the coastal shoreline measurements, the root mean square error (RMSE) of Landsat-7 and Google Earth was 18.53 m, enabling comparisons of the accuracy of different models on the same dataset. The results demonstrate the extensive impact of the 2004 Indian Ocean Tsunami on South Andaman’s coastal shoreline and the value of analyzing shoreline changes to understand the short- and long-term consequences of such events on coastal ecosystems. This information can inform conservation efforts, management strategies, and disaster response plans to mitigate future damage and allocate resources more efficiently. By better understanding the impact of tsunamis on coastal shorelines, emergency responders, government agencies, and conservationists can develop more effective strategies to protect these fragile ecosystems and the communities that rely on them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.