Abstract
Maple syrup is an important part of the economy in various regions of the United States. Studies on maple syrup production potential mostly use climatic factors as determinants and, therefore, fail to account for non-climatic factors. In this study, we applied a stochastic production function framework to establish a relationship between maple syrup yield and a set of climatic (temperature and tapping season length) and non-climatic determining factors, such as the number of maple trees and utilization rate of the potential number of taps. Tree characteristics, climatic, and other factors had mixed effects on syrup yield. The number of maple trees, the number of taps, and the minimum temperature had marginal negative effects on average syrup yield, while the length of the season and the maximum temperature had positive effects. A predictive model was developed and used to estimate the potential production of maple syrup under low, medium and high utilization levels in Kentucky, a likely region for maple syrup production. This model could be useful for maple syrup research, education, and extension in maple-producing states.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.