Abstract
Residential proximity to ferroalloy production has been associated with increased manganese exposure, which can adversely affect health, particularly among children. Little is known, however, about which environmental samples contribute most to internal levels of manganese and other ferroalloy metals. We aimed to characterize sources of exposure to metals and evaluate the ability of internal biomarkers to reflect exposures from environmental media. In 717 Italian adolescents residing near ferromanganese industry, we examined associations between manganese, lead, chromium, and copper in environmental samples (airborne particles, surface soil, indoor/outdoor house dust) and biological samples (blood, hair, nails, saliva, urine). In multivariable regression analyses adjusted for child age and sex, a 10% increase in soil Mn was associated with increases of 3.0% (95% CI: 1.1%, 4.9%) in nail Mn and 1.6% (95% CI: −0.2%, 3.4%) in saliva Mn. Weighted-quantile-sum (WQS) regression estimated that higher soil and outdoor dust Mn accounted for most of the effect on nail Mn (WQS weights: 0.61 and 0.22, respectively, out of a total of 1.0). Higher air and soil Mn accounted for most of the effect on saliva Mn (WQS weights: 0.65 and 0.29, respectively). These findings can help inform biomarker selection in future epidemiologic studies and guide intervention strategies in exposed populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Exposure Science & Environmental Epidemiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.