Abstract

Traditional models of electric power systems represent distribution systems with unbalanced three-phase network models and transmission systems with balanced single-phase-equivalent network models. This distinction poses a challenge for coupled models of transmission and distribution systems, which are becoming more prevalent due to the growth of distributed energy resources connected to distribution systems. In order to maintain a balanced network representation, transmission system models typically assume that the voltage phasors at the interface to the distribution system are balanced. Inaccuracies resulting from this assumption during unbalanced operation can lead to erroneous values for line currents in the transmission system model. This paper empirically quantifies the accuracy of this balanced operating assumption during unbalanced operating conditions for both a simple two-bus system along with a more complex transmission and distribution co-simulation. This paper also characterizes the performance of different methods for translating the unbalanced voltage phasors into a balanced representation in order to give recommendations for modeling coupled transmission and distribution systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.