Abstract

AbstractAcid deposition is a major biogeochemical driver in forest ecosystems, but the impacts of long‐term changes in deposition on forest productivity remain unclear. Using a combination of tree ring and forest inventory data, we examined tree growth and climate sensitivity in response to 26 years of whole‐watershed ammonium sulfate ((NH4)2SO4) additions at the Fernow Experimental Forest (West Virginia, USA). Linear mixed effects models revealed species‐specific responses to both treatment and hydroclimate variables. When controlling for environmental covariates, growth of northern red oak (Quercus rubra), red maple (Acer rubrum), and tulip poplar (Liriodendron tulipifera) was greater (40%, 52%, and 42%, respectively) in the control watershed compared to the treated watershed, but there was no difference in black cherry (Prunus serotina). Stem growth was generally positively associated with growing season water availability and spring temperature and negatively associated with vapor pressure deficit. Sensitivity of northern red oak, red maple, and tulip poplar growth to water availability was greater in the control watershed, suggesting that acidification treatment has altered tree response to climate. Results indicate that chronic acid deposition may reduce both forest growth and climate sensitivity, with potentially significant implications for forest carbon and water cycling in deposition‐affected regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call