Abstract
AbstractStreams are important sources of methane (CH4) to the atmosphere but magnitudes and regulation of stream CH4 fluxes remain uncertain. Stream CH4 can come from groundwater and/or produced in anoxic sediments. A fraction can be microbially oxidized to carbon dioxide (CO2) when passing redox gradients in soil, sediment, or water, while the fraction escaping oxidation is emitted to the atmosphere. The relative importance of the CH4 sources (groundwater inputs vs. sediment production) and the fraction oxidized is typically unknown, yet key for the regulation and magnitude of stream emissions. In this study, we followed the transport of CH4 from below‐stream soils to the stream water surface and to the atmosphere using a combination of CH4 concentration and stable carbon isotope gradient measurements, high resolution stream flux and discharge assessments, and inverse mass‐balance modeling. Sampling was done in multiple locations in the stream network of two independent catchments in Sweden to consider spatial variability. We show that the surface water, sub‐surface, and groundwater CH4 concentration, CH4 oxidation, and emission were highly variable in space. Our results indicate that the variability could be related to stream morphology and soil characteristics. Of the total CH4 input into the streams, roughly half of it was estimated to come from groundwater CH4 in both catchments (39% and 57%; the rest from sediment production), and most of the CH4 was oxidized (97%–99%) before emission to the atmosphere. Our results indicate that CH4 oxidation is a major sink for CH4 in the studied streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.