Abstract

Spaceborne snow water retrievals over oceans are assessed using a multiyear coincident dataset of CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Mission (GPM) Dual-frequency Precipitation Radar (DPR). Various factors contributing to differences in snow water retrievals between CPR and DPR are carefully considered. A set of relationships between radar reflectivity (Ze) and snow water content (SWC) at Ku- and W-bands is developed using the same microphysical assumptions. It is found that surface snow water contents from CPR are much larger than those from DPR at latitudes above 60°, while surface snow water contents from DPR slightly exceed those from CPR at latitudes below 50°. Coincident snow water content profiles between CPR and DPR are further divided into two conditions. One is that only CPR detects the falling snow. Another is that both CPR and DPR detect the falling snow. The results indicate that about 88% of all snow water content profiles are under the first condition and usually associated with light snowfall events. The remaining snow water content profiles are generally associated with moderate and heavy snowfall events. Moreover, CPR surface snow water contents are larger than DPR ones at high latitudes because most light snowfall events are misdetected by DPR due to its low sensitivity. DPR surface snow water contents exceed CPR ones at low latitudes because CPR may experience a significant reduction in backscattering efficiency of large particles and attenuation in heavy snowfall events. The low sensitivity of DPR also causes a noticeable decrease in detected snow layer depth. The results presented here can help in developing global snowfall retrieval algorithms using multi-radars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call