Abstract

The present study aims to assess rainfall erosivity and erosivty density both in space and time over the Suketi River catchment of western Himalayan region in India during 1971–2015. The data used comprises of daily rainfall measurements at three rain gauge stations, which are sparsely distributed over the catchment. Rainfall erosivity was assessed by employing Wischmeier and Smith algorithms, whereas erosivity density was estimated by applying Kinnell’s algorithm. The spatial distribution of both algorithms was analyzed through Kriging method based on geographical information system. The obtained results indicate remarkable year-to-year, seasonal and monthly variations in average annual rainfall erosivity and erosivity density. Apart from this, individual cases of high and very high rainfall erosivity and erosivity density were noticed. The long-term average annual rainfall erosivity and erosivity density revealed a general decreasing trend. This decreasing trend in rainfall erosivity was found to be statistically significant at 0.05 significance level, whereas it was found to be non-significant for erosivity density. The highest values of both indices were observed in the month of July followed by August and June particularly in northern parts. These results indicate that July month followed by August and June are the most susceptible months for soil erosion over the Suketi River catchment with lower reaches (northern) being the most vulnerable one. Finally, results of this study will be valuable for farmers, agronomists and regional planners in chalking out best management practices for reducing water erosion in vulnerable areas of the catchment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call