Abstract
The first order local influence approach is adopted in this paper to assess the local influence of observations to canonical correlation coefficients, canonical vectors and several relevant test statistics in canonical correlation analysis. This approach can detect different aspects of influence due to different perturbation schemes. In this paper, we consider two different kinds, namely, the additive perturbation scheme and the case-weights perturbation scheme. It is found that, under the additive perturbation scheme, the influence analysis of any canonical correlation coefficient can be simplified to just observing two predicted residuals. To do the influence analysis for canonical vectors, a scale invariant norm is proposed. Furthermore, by choosing proper perturbation scales on different variables, we can compare the different influential effects of perturbations on different variables under the additive perturbation scheme. An example is presented to illustrate the effectiveness of the first order local influence approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.