Abstract

A canonical correlation analysis (CCA) is a state-of-the-art method for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Various extended methods have been developed, and among such methods, a combination method of CCA and individual-template-based CCA has achieved the best performance. However, the CCA requires the canonical vectors to be orthogonal, which may not be a reasonable assumption for the EEG analysis. In this paper, we propose using the correlated component analysis (CORRCA) rather than CCA to implement frequency recognition. CORRCA can relax the constraint of canonical vectors in CCA and generate the same projection vector for two multichannel EEG signals. Furthermore, we propose a two-stage method based on the basic CORRCA method (termed TSCORRCA). Evaluated on a benchmark data set of 35 subjects, the experimental results demonstrate that CORRCA significantly outperformed CCA, and TSCORRCA obtained the best performance among the compared methods. This paper demonstrates that CORRCA-based methods have a great potential for implementing high-performance SSVEP-based BCI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.