Abstract

Studies of social networks provide unique opportunities to assess the causal effects of interventions that may impact more of the population than just those intervened on directly. Such effects are sometimes called peer or spillover effects, and may exist in the presence of interference, that is, when one individual's treatment affects another individual's outcome. Randomization-based inference (RI) methods provide a theoretical basis for causal inference in randomized studies, even in the presence of interference. In this article, we consider RI of the intervention effect in the eX-FLU trial, a randomized study designed to assess the effect of a social distancing intervention on influenza-like-illness transmission in a connected network of college students. The approach considered enables inference about the effect of the social distancing intervention on the per-contact probability of influenza-like-illness transmission in the observed network. The methods allow for interference between connected individuals and for heterogeneous treatment effects. The proposed methods are evaluated empirically via simulation studies, and then applied to data from the eX-FLUtrial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.