Abstract

Understanding the impact of land use/land cover (LULC) change on hydrology is the key to sustainable water resource management. In this study, we used the Soil and Water Assessment Tool (SWAT) to evaluate the impact of LULC change on the runoff in the Rur basin, Germany. The SWAT model was calibrated against the observed data of stream flow and runoff at three sites (Stah, Linnich, and Monschau) between 2000 and 2010 and validated between 2011 and 2015. The performance of the hydrological model was assessed by using statistical parameters such as the coefficient of determination (R2), p-value, r-value, and percentage bias (PBAIS). Our analysis reveals that the average R2 values for model calibration and validation were 0.68 and 0.67 (n = 3), respectively. The impacts of three change scenarios on stream runoff were assessed by replacing the partial forest with urban settlements, agricultural land, and grasslands compared to the 2006 LULC map. The SWAT model captured, overall, the spatio-temporal patterns and effects of LULC change on the stream runoffs despite the heterogeneous runoff responses related to the variable impacts of the different LULC. The results show that LULC change from deciduous forest to urban settlements, agricultural land, or grasslands increased the overall basin runoff by 43%, 14%, and 4%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.