Abstract

In the last several years, the choice of hydrological fracking as an alternative method of nonrenewable energy production in the US oil sector continues to gain currency across regions especially the Southeast and the West. In a country where fracking is no longer deemed as an exercise on the fringe amidst unprecedented expansion, economic boom, and ecological liabilities. The use of fracking techniques in shale fields remains so widespread across different states from California to Mississippi that it now constitutes 60% of the nation’s oil and gas output in the past two decades. This occurred in the face of favorable regulatory environments that catapulted the US atop global ranking of oil producers. While this has resulted in ample generation of revenues and job prospects in the respective states, communities in those places have endured grim impacts and risks on their ecosystems in the form of pollution, degradation, hydrological stress, induced seismicity, land disturbance and greenhouse gas emissions. Aside from efforts of the sector, regulatory agencies, and other stakeholders in the search for a common ground on the issues. The mounting ecological liabilities has in many cases aggravated tensions between affected communities and the oil sector. Yet, very little studies exist on the vulnerability of the study area to the impacts of hydraulic fracking using mix scale method of Geographic Information Systems (GIS) and energy statistics. Even when data is available, the sketchy nature tends to mar analytical proficiency given the lack of an accessible regional energy information system. Accordingly, this enquiry will fill that void by assessing the issues in hydraulic fracking in the study area. Emphasis are on the issues, trends, factors, impacts and efforts using techniques of GIS and descriptive statistics. Just as the results revealed a surge in production activities and revenues, the impacts consist of sizable use of water and chemicals together with extensive pollution, the disturbance of fragile landscapes and ecosystem decline. Additionally, GIS mappings pinpointed a gradual spread of production activities and concentration of risks across states in the zone due to several socio-economic and physical elements located withing the larger energy structure. To remedy the situation, the paper proffered solutions ranging from ecological monitoring to the design of a regional energy information system, effective policy, community participation/education of the public and the formation of an interagency task force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call