Abstract
Time-resolved tomographic cardiac imaging using an angiographic C-arm device may support clinicians during minimally invasive therapy by enabling a thorough analysis of the heart function directly in the catheter laboratory. However, clinically feasible acquisition protocols entail a highly challenging reconstruction problem which suffers from sparse angular sampling of the trajectory. Compressed sensing theory promises that useful images can be recovered despite massive undersampling by means of sparsity-based regularization. For a multitude of reasons—most notably the desired reduction of scan time, dose and contrast agent required—it is of great interest to know just how little data is actually sufficient for a certain task.In this work, we apply a convex optimization approach based on primal-dual splitting to 4D cardiac C-arm computed tomography. We examine how the quality of spatially and temporally total-variation-regularized reconstruction degrades when using as few as projection views per heart phase. First, feasible regularization weights are determined in a numerical phantom study, demonstrating the individual benefits of both regularizers. Secondly, a task-based evaluation is performed in eight clinical patients. Semi-automatic segmentation-based volume measurements of the left ventricular blood pool performed on strongly undersampled images show a correlation of close to 99% with measurements obtained from less sparsely sampled data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have