Abstract

This study's purpose was to determine the validity of near-infrared interactance (NIR) and bioelectric impedance (BIA) in tracking changes in body composition over 12 wk of either a high intensity endurance (ET) or resistance (RT) training program in nondieting weight-stable untrained males. Prior to and following the control or training period, each subject completed a series of body composition analyses including hydrostatic weighing (HW) with a measurement of residual volume: anthropometric measurements including height, weight, skinfold, and girth: BIA measurement: and NIR measurements. Based on the HW results, there were no significant body composition changes in the control group. For the ET group, a significant decline in relative body fat resulted from a reduction in fat weight (FW) with no change in fat-free weight (FFW). In the RT group, both a significant decline in FW and an increase in FFW contributed to this group's decline in relative body fat. Tracking changes in relative body fat, FW, and FFW, skinfolds agree reasonably well with HW in all groups while BIA and NIR did not always track body composition changes well. For example, SF and BIA were significantly correlated with the changes in FFW (HW = +4.1%, SF = +4.5%. BIA = +3.1%. NIR = -0.7%) observed in the RT group compared to HW (SF: r-value = 0.45, SEE = 2.5; BIA: r = 0.33, SEE = 3.4) while the NIR measurements were nonsignificant (r = 0.09, SEE = 5.0). Interestingly, NIR underestimated the gain in FFW in the resistance trained group while BIA underestimated the changes in relative body fat. FW, and FFW in the endurance trained group. Based on these results, BIA and NIR appear not to be appropriate measurement tools for tracking body composition changes in endurance and resistance training individuals respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.