Abstract

Climate change can cause considerable changes in water resources and assessing the potential impacts can provide important information for regional sustainable development. The objectives were to evaluate the possible impacts of climate change during 2010–2039 on water resources (runoff, soil water content, and evapotranspiration) in the Heihe watershed on the Loess Plateau of China and to further explore adaptive measures to cope with the changes. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emission scenarios (A2, B2, and GGa) were used to estimate future changes in precipitation, maximum and minimum temperature based on Change Factor method. The Soil and Water Assessment Tool (SWAT) was employed to simulate the hydrologic responses to climate changes. The CA-Markov model was used to develop land use scenarios. Compared with the present climate, the climate models predicted a −2.3% to 7.8% change in annual precipitation, 0.7 to 2.2°C rises in maximum temperature, and 1.2 to 2.8°C rises in minimum temperature. Without consideration of land use change, SWAT predicted a −19.8% to 37.0% change for runoff, −5.5% to 17.2% change for soil water content, and 0.1% to 5.9% increase for evapotranspiration during 2010–2039 under all climate scenarios. Though the change of hydrometeorolocial variables are complex, they would possibly increase with great probability, and the hydrological regime would be influenced such as a decrease in runoff in winter months. With land use changes, the projected land use of 2015 would increase soil water content by 4.0% and surface runoff by 5.7% while slightly decrease evapotranspiration by 0.6% compared with the 2000 land use. This result showed that adjustment of land use patterns was capable of regulating water resources and could be used to mitigate the adverse effects of climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.