Abstract

BackgroundSuccessful injection of radiolabeled compounds is critical for positron emission tomography (PET) imaging. A poor quality injection limits the tracer availability in the body and can impact diagnostic results. In this study, we attempt to quantify our infiltration rates, develop an actionable quality improvement plan to reduce potentially compromised injections, and compare injection scoring to PET/CT imaging results.MethodsA commercially available system that uses external radiation detectors was used to monitor and score injection quality. This system compares the time activity curves of the bolus relative to a control reading in order to provide a score related to the quality of the injection. These injection scores were used to assess infiltration rates at our facility in order to develop and implement a quality improvement plan for our PET imaging center. Injection scores and PET imaging results were reviewed to determine correlations between image-based assessments of infiltration, such as liver SUVs, and injection scoring, as well as to gather infiltration reporting statistics by physicians.ResultsA total of 1033 injections were monitored at our center. The phase 1 infiltration rate was 2.1%. In decision tree analysis, patients < 132.5lbs were associated with infiltrations. Additional analyses suggested patients > 127.5 lbs. with non-antecubital injections were associated with lower quality injections. Our phase 2 infiltration rate was 1.9%. Comparison of injection score to SUV showed no significant correlation and indicated that only 63% of suspected infiltrations were visible on PET/CT imaging.ConclusionsDeveloping a quality improvement plan and monitoring PET injections can lead to reduced infiltration rates. No significant correlation between reference SUVs and injection score provides evidence that determination of infiltration based on PET images alone may be limited. Results also indicate that the number of infiltrated PET injections is under-reported.

Highlights

  • Successful injection of radiolabeled compounds is critical for positron emission tomography (PET) imaging

  • In addition to obtaining standard up take value (SUV) from patient reports, we examined the imaging data for cases considered to be potentially infiltrated to determine the percentage of infiltrations that were visible in the PET field of view (FOV) and called out in the radiology reports

  • This is true for the average PET scan, the authors concede that severe infiltrations may result in potential visual changes to the data that may make it evident that an issue occurred with the injection

Read more

Summary

Introduction

Successful injection of radiolabeled compounds is critical for positron emission tomography (PET) imaging. Misadministration or infiltration of the dose results in changes to uptake kinetics which may alter the quantitative assessment of PET data. This can impact cancer patient staging, therapy assessment, treatment planning, and can lead to unnecessary invasive procedures and patient radiation exposure [6,7,8,9]. The standard quantitative assessment for fluorodeoxyglucose (18F-FDG) PET imaging is the standard up take value (SUV). This value is calculated from the activity concentration measured by the scanner and normalizing by the patient’s weight and (2020) 20:3 the injected dose (ID).

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.