Abstract

As the emerging and noninvasive biomarkers, exosomes play an important role in cancer screening, cancer-related immune response, and the physiological process. The sensitive, specific, and efficient detection of cancer cell-derived exosomes is of significance for early cancer diagnosis of patients. This work developed a novel dual-signal and intrinsic self-calibration aptasensor of exosomes based on a functional hybrid thin-film platform. This platform was constructed via facile assembly of black phosphorus nanosheets (BPNSs) and ferrocene (Fc)-doped metal-organic frameworks (ZIF-67) on indium tin oxide (ITO) slice, followed by combining methylene blue (MB)-labeled single- strand DNA aptamer on ITO slice. The resultant aptamer-BPNSs/Fc/ZIF-67/ITO platform had dual redox-signal responses of MB (labeled on aptamer) and Fc (doped into ZIF-67). In the presence of specific cancer cell-derived exosomes, the redox current of MB regularly reduced and that of Fc (as reference) hardly changed. An intrinsic self-calibration aptasensor was achieved and enabled sensitive detection of exosomes, showing a limit of detection down to 100 particles mL-1. The aptasensor with a capability of precise protein capture can efficiently determine specific cancer cell-derived exosomes in practical human serum and plasma samples from healthy individuals and breast cancer patients. In light of excellent performances, this aptasensor can be expanded to multiple biomarkers from cell line exosomes and is beneficial for exploring advanced techniques for high-performance detection of exosomes derived from different types of cancer cells. This work promotes the development of current techniques for early cancer screening and clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call