Abstract

Newly obtained and previously published sequences of the cytochrome c oxidase subunit I (COI) gene were analyzed to examine the biogeographic assembly of the caenogastropod fauna (belonging to the families Assimineidae, Cochliopidae, and Hydrobiidae) of an isolated spring along the lower Colorado River in southern Nevada (Blue Point Spring). Based on available COI clock calibrations, the three lineages that comprise this fauna are 2.78–1.42 million years old, which is roughly coeval or slightly younger than the age of Blue Point Spring (inferred from local fossil spring deposits). Two of the lineages—endemic Pyrgulopsis coloradensis and Assiminea aff. infima—are most closely related to snails in the Death Valley area (well to the west) and likely colonized Blue Point Spring by transport on birds. A single haplotype was detected in both of these snails, suggesting that they may have only recently colonized Blue Point Spring. The third lineage—endemic Tryonia infernalis, newly described herein based on morphological and molecular evidence—is most closely related to a geographically proximal species in a lower Colorado River tributary (Tryonia clathrata); the split between these taxa may be the product of vicariance (severance of a prior drainage connection) or a separate jump dispersal event. The considerable genetic diversity in Tryonia infernalis (three haplotypes differing by 0.6% mean sequence divergence) suggests a possibly lengthy history of local differentiation. Our findings also identify Blue Point Spring as a new micro-hotspot of groundwater-dependent biodiversity in Nevada and will assist ongoing efforts to protect and conserve these imperiled ecosystems.

Highlights

  • The desert region of southeastern California and southwestern Nevada, encompassing portions of the Great Basin and lower Colorado River watershed, contains distinctive assemblages of tiny caenogastropods—belonging to the families Assimineidae, Cochliopidae (Tryonia) and Hydrobiidae (Pyrgulopsis)—that have been a recent focus of biogeographic study using mtDNA sequence data (e.g., Hershler et al 1999a, b, Hershler and Liu 2008a, b)

  • The Tryonia assemblage is composed of a few subgroups that have close relationships with congeners from the lower Colorado River basin (T. angulata Hershler), northern Great Basin and western California (T. margae Hershler, T. salina Hershler), and northeastern Mexico (T. porrecta [Mighels, 1845]; clade composed of T. elata Hershler, T. ericae Hershler, T. variegata Hershler) (Hershler et al 1999a, Hershler et al 2011)

  • The phylogenetic analyses congruently depicted a sister relationship between P. coloradensis and P. sanchezi Hershler, Liu & Bradford, which is distributed in the Death Valley area (Fig. 1)

Read more

Summary

Introduction

The desert region of southeastern California and southwestern Nevada, encompassing portions of the Great Basin and lower Colorado River watershed, contains distinctive assemblages of tiny caenogastropods—belonging to the families Assimineidae (genus Assiminea), Cochliopidae (Tryonia) and Hydrobiidae (Pyrgulopsis)—that have been a recent focus of biogeographic study using mtDNA sequence data (e.g., Hershler et al 1999a, b, Hershler and Liu 2008a, b). Blue Point Spring contains an endemic species of Pyrgulopsis (P. coloradensis Hershler) and a population of Tryonia that was previously assigned to widely ranging T. porrecta (Hershler 2001), neither of which have been previously studied genetically.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.