Abstract

Fullerene-assembled low-dimensional materials have been experimentally realized in polymorphic forms and have attracted significant interest very recently. Here, we predict a two-dimensional (2D) honeycomb lattice material TM2(C60)3 (TM = Cr, Mo, and W) assembled from exohedral metallofullerene clusters TM(C60)3 that could exhibit planar triangular geometries. According to first-principles calculations combined with Monte Carlo simulations, we suggest that these 2D assembled materials exhibit various exotic physical properties, including ferromagnetism, ferroelectricity, and quantum anomalous Hall effect. Interestingly, mechanical strains could effectively tune their magnetic moments and switch the conducting spin channel of the Dirac bands at the Fermi level. Our work provides a new cluster-assembly design strategy toward cluster-assembled 2D materials based on fullerene characters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.