Abstract
Huperzia crispata is a traditional Chinese herb plant and has attracted special attention in recent years for its products Hup A can serve as an acetylcholinesterase inhibitor (AChEI). Although the chloroplast (cp) genome of H. crispata has been studied, there are no reports regarding the Huperzia mitochondrial (mt) genome since the previously reported H. squarrosa has been revised as Phlegmariurus squarrosus. The mt genome of H. crispata was sequenced using a combination of long-read nanopore and Illumina sequencing platforms. The entire H. crispata mt genome was assembled in a circular with a length of 412,594 bp and a total of 91 genes, including 45 tRNAs, 6 rRNAs, 37 protein-coding genes (PCGs), and 3 pseudogenes. Notably, the rps8 gene was present in P. squarrosus and a pseudogene rps8 was presented in H. crispata, which was lacking in most of Pteridophyta and Gymnospermae. Intron-encoded maturase (mat-atp9i85 and mat-cobi787) genes were present in H. crispata and P. squarrosus, but lost in other examined lycophytes, ferns, and Gymnospermae plants. Collinearity analysis showed that the mt genome of H. crispata and P. squarrossus is highly conservative compared to other ferns. Relative synonymous codon usage (RSCU) analysis showed that the amino acids most frequently found were phenylalanine (Phe) (4.77%), isoleucine (Ile) (4.71%), lysine (Lys) (4.26%), while arginine (Arg) (0.32%), and histidine (His) (0.42%) were rarely found. Simple sequence repeats (SSR) analysis revealed that a total of 114 SSRs were identified in the mt genome of H. crispata and account for 0.35% of the whole mt genome. Monomer repeats were the majority types of SSRs and represent 91.89% of the total SSRs. In addition, a total of 1948 interspersed repeats (158 forward, 147 palindromic, and 5 reverse repeats) with a length ranging from 30 bp to 14,945 bp were identified in the H. crispata mt genome and the 30-39-bp repeats were the most abundant type. Gene transfer analysis indicated that a total of 12 homologous fragments were discovered between the cp and mt genomes of H. crispata, accounting for 0.93% and 2.48% of the total cp and mt genomes, respectively. The phylogenetic trees revealed that H. crispata was the sister of P. squarrosus. The Ka/Ks analysis results suggested that most PCGs, except atp6 gene, were subject to purification selection during evolution. Our study provides extensive information on the features of the H. crispata mt genome and will help unravel evolutionary relationships, and molecular identification within lycophytes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have