Abstract

Capillary assembly has the ability to engineer centimeter-sized regions of discrete colloidal superstructures and microarrays. However, its use as a tool for directing crystallization of colloids into surface-bound nonclose-packed arrays is limited. Furthermore, the use of quantitative particle tracking tools to investigate evaporative assembly dynamics is rarely employed. In this contribution, we use templated capillary assembly to fabricate square-packed lattices of spherical, organosilica colloids using designed patterned boundaries. Particle tracking algorithms reveal that the assembly of square-packed regions is controlled by the interplay between confinement-driven nuclei formation and osmotic pressure-driven restructuring. We find that the incorporation of a square template increases the yield of particles bearing four nearest neighbors (Zn = 4) from 4 to 39%, obtained using a heavier and more viscous solvent. Maximal square-packed domains occur at specific initial particle concentrations (1.75-2.25 wt % or φ = 0.013-0.017), indicating that rearrangements are a function of osmotic force. We use particle tracking methods to dynamically monitor conversions between square and hexagonal packing, revealing a cyclical transition between 4 and 6 coordinated particles throughout meniscus recession. Our method is highly scalable and inexpensive and can be adapted for use with different particle sizes and compositions, as well as for targeted open-packed geometries. Our findings will inform the large area, defect-free assembly of nonclose-packed lattices of unexplored varieties that are necessary for the continued expansion of colloid-based materials with vast applications in optical electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.