Abstract
We report an unprecedented result of self-aggregation of [Pt(L1 )Cl] (HL1 =1,3-di(5-carboxy-2-pyridyl)benzene) triggered by CO2 in basic aqueous solution. The color of basic aqueous solution containing [Pt(L1 )Cl] changes from yellow to blue-green during the aggregation resulted from a reaction with CO2 in air. Upon CO2 gas bubbling, strong and broad absorption bands of aggregate assigned to the metal-metal-to-ligand charge-transfer transition appeared at 701 and 1152 nm. Recrystallization of [Pt(L1 )Cl] from Na2 CO3 aqueous solution afforded polymorphic crystals of red and blue-green forms. A single X-ray crystallography revealed that the red form of crystal consists of a Pt-Pt stacked dimer bridged by CO3 2- ion and one of the carboxy groups of L1 is deprotonated. An elemental analysis provided evidence that the blue-green crystal is constructed by linear array consisting of the [Pt(L2 )(CO3 )]3- (HL2 =1,3-di(5-carboxylate-2-pyridyl)benzene) units. The formation process of blue-green aggregate in aqueous solution was monitored through a transient absorption spectrum, and the absorption of aggregates involved in the spectral change were examined by a global analysis. A singular value decomposition and kinetic analysis provide that there are four species resulted from the self-assembling reaction in the solution and the maximal degree of aggregation is at least 32-mer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.